telegraf 配置文件
[agent]
## Default data collection interval for all inputs
interval = "10s"
## Rounds collection interval to 'interval'
## ie, if interval="10s" then always collect on :00, :10, :20, etc.
round_interval = true
## Telegraf will send metrics to outputs in batches of at most
## metric_batch_size metrics.
## This controls the size of writes that Telegraf sends to output plugins.
metric_batch_size = 1000
## Maximum number of unwritten metrics per output. Increasing this value
## allows for longer periods of output downtime without dropping metrics at the
## cost of higher maximum memory usage.
metric_buffer_limit = 10000
## Collection jitter is used to jitter the collection by a random amount.
## Each plugin will sleep for a random time within jitter before collecting.
## This can be used to avoid many plugins querying things like sysfs at the
## same time, which can have a measurable effect on the system.
collection_jitter = "0s"
## Collection offset is used to shift the collection by the given amount.
## This can be be used to avoid many plugins querying constraint devices
## at the same time by manually scheduling them in time.
# collection_offset = "0s"
## Default flushing interval for all outputs. Maximum flush_interval will be
## flush_interval + flush_jitter
flush_interval = "10s"
## Jitter the flush interval by a random amount. This is primarily to avoid
## large write spikes for users running a large number of telegraf instances.
## ie, a jitter of 5s and interval 10s means flushes will happen every 10-15s
flush_jitter = "0s"
## Collected metrics are rounded to the precision specified. Precision is
## specified as an interval with an integer + unit (e.g. 0s, 10ms, 2us, 4s).
## Valid time units are "ns", "us" (or "µs"), "ms", "s".
##
## By default or when set to "0s", precision will be set to the same
## timestamp order as the collection interval, with the maximum being 1s:
## ie, when interval = "10s", precision will be "1s"
## when interval = "250ms", precision will be "1ms"
##
## Precision will NOT be used for service inputs. It is up to each individual
## service input to set the timestamp at the appropriate precision.
precision = "0s"
## Log at debug level.
debug = true
## Log only error level messages.
# quiet = false
## Log target controls the destination for logs and can be one of "file",
## "stderr" or, on Windows, "eventlog". When set to "file", the output file
## is determined by the "logfile" setting.
logtarget = "file"
## Name of the file to be logged to when using the "file" logtarget. If set to
## the empty string then logs are written to stderr.
logfile = "E:/tools/telegraf.log"
## The logfile will be rotated after the time interval specified. When set
## to 0 no time based rotation is performed. Logs are rotated only when
## written to, if there is no log activity rotation may be delayed.
# logfile_rotation_interval = "0h"
## The logfile will be rotated when it becomes larger than the specified
## size. When set to 0 no size based rotation is performed.
# logfile_rotation_max_size = "0MB"
## Maximum number of rotated archives to keep, any older logs are deleted.
## If set to -1, no archives are removed.
# logfile_rotation_max_archives = 5
## Pick a timezone to use when logging or type 'local' for local time.
## Example: America/Chicago
# log_with_timezone = ""
## Override default hostname, if empty use os.Hostname()
hostname = "微信"
## If set to true, do no set the "host" tag in the telegraf agent.
omit_hostname = false
[[outputs.prometheus_client]]
# https://github.com/influxdata/telegraf/blob/master/plugins/outputs/prometheus_client/README.md
## Address to listen on.
listen = ":9273"
metric_version = 2
export_timestamp = true
[[inputs.win_perf_counters]]
[[inputs.win_perf_counters.object]]
Measurement = "win_cpu"
ObjectName = "Processor"
Instances = ["*"]
UseRawValues = true
Counters = [
"% Idle Time",
"% Interrupt Time",
"% Privileged Time",
"% User Time",
"% Processor Time",
"% DPC Time",
]
[[inputs.win_perf_counters.object]]
Measurement = "win_disk"
ObjectName = "LogicalDisk"
Instances = ["*"]
Counters = [
"% Idle Time",
"% Disk Time",
"% Disk Read Time",
"% Disk Write Time",
"% User Time",
"% Free Space",
"Current Disk Queue Length",
"Free Megabytes",
]
[[inputs.win_perf_counters.object]]
Measurement = "win_diskio"
ObjectName = "PhysicalDisk"
Instances = ["*"]
Counters = [
"Disk Read Bytes/sec",
"Disk Write Bytes/sec",
"Current Disk Queue Length",
"Disk Reads/sec",
"Disk Writes/sec",
"% Disk Time",
"% Disk Read Time",
"% Disk Write Time",
]
[[inputs.win_perf_counters.object]]
Measurement = "win_net"
ObjectName = "Network Interface"
Instances = ["*"]
Counters = [
"Bytes Received/sec",
"Bytes Sent/sec",
"Packets Received/sec",
"Packets Sent/sec",
"Packets Received Discarded",
"Packets Outbound Discarded",
"Packets Received Errors",
"Packets Outbound Errors",
]
[[inputs.win_perf_counters.object]]
Measurement = "win_system"
ObjectName = "System"
Instances = ["------"]
Counters = [
"Context Switches/sec",
"System Calls/sec",
"Processor Queue Length",
"System Up Time",
]
[[inputs.win_perf_counters.object]]
Measurement = "win_mem"
ObjectName = "Memory"
# Use 6 x - to remove the Instance bit from the counterPath.
Instances = ["------"]
Counters = [
"Available Bytes",
"Cache Faults/sec",
"Demand Zero Faults/sec",
"Page Faults/sec",
"Pages/sec",
"Transition Faults/sec",
"Pool Nonpaged Bytes",
"Pool Paged Bytes",
"Standby Cache Reserve Bytes",
"Standby Cache Normal Priority Bytes",
"Standby Cache Core Bytes",
]
# [[inputs.wireguard]]
# ## Optional list of Wireguard device/interface names to query.
# ## If omitted, all Wireguard interfaces are queried.
# # devices = ["wg0"]